ABSTRACT

As a foundation under the structure can be generally divided into two types, namely the foundation deep and shallow foundation. Selection of the type of foundation depends on the type of structure including the construction load on whether light or heavy loads and also depending on the soil type. For the construction of a light load and soil conditions quite well, usually worn shallow foundation, but the construction of a heavy load is usually the type of deep foundation is the right choice.

In general, the more complex the deep foundation of a shallow foundation. To this writer tried to concentrate on planning the foundation of this thesis in which bored pile (Bored Pile Foundations). Bored Pile foundation is a foundation built by drilling the ground first, then filled with steel reinforcement and cast. Bored pile used when soil solid base which has a carrying capacity of it lies very deep, which is approximately 15 m as well as the state of the soil around the many stands a large building and rise to the feared could lead to cracks in the existing building effect vibrations caused by staking activity when administered pile foundation. Carrying capacity of bored pile end bearing capacity is obtained than that obtained from pressure and friction pile tip bearing capacity obtained from carrying friction or adhesion force between the bored pile and the surrounding soil.

Keyword: Bored Pile, Axial Bearing Capacity, SPT, Loading Test
1. PRELIMINARY

In line with government programs to improve the level of development, as we have seen in countries that are developing. In Jakarta as the capital city of Indonesia, the clean themselves in the development of various sectors.

Development around the city includes the construction of bridges and highway transportation, housing, offices, hotels, entertainment venues, shopping centers, and other means. This development is not only the starting point in the development undertaken by the government, but also private parties participate realizing national development.

Before carrying out a construction first times development implemented and done is the foundation work (Structure below). The foundation is a very important job in a civil engineering work because this is the foundation that bears and withstand a load acting on it is the burden of top construction. This foundation to channel voltages occurs in structural loads on the hard ground into a layer that can bear the burden of the construction.

Bored pile-soil interaction circuitry for generating carrying capacity capable of taking and giving security to the top of the structure. To produce an accurate carrying capacity would require an accurate soil investigation as well. There are two methods used in the determination of the bearing capacity of the bored pile is by using static and dynamic methods.

Soil investigation using a static method is penetration test (SPT). Investigations Standard Penetration Test (SPT) to obtain a picture layer of soil based on soil type and color through visual observation, soil properties, and soil characteristics.

Planning foundation bored pile covering a series of activities undertaken by the various stages that include technical feasibility studies. All was done in order to ensure the outcome of the construction is strong, safe and economical.

Based on preliminary, the issues to be discussed in this thesis, are:

a. How to determine the axial bearing capacity of foundation bored pile using laboratory test data, the data standard penetration test (SPT) and data loading test?

b. How would you compare the results of the carrying capacity of the single bored pile with the method of SPT and Loading Test?

The purpose of this research in Elevated Toll Road Jakarta - Cikampek are:

a. Calculating foundation carrying capacity of a single bored pile of test data in labs, standard penetration test (SPT), and loading test.

b. Comparing the results of the carrying capacity of the single bored pile with SPT method, and Loading Test.

2. METHOD

Axial Bearing capacity of the foundation pile / Bore Pile can be calculate based on data from field test results and based on the parameter data in the laboratory soil test results by following general formula derived from the sum of detainees and prisoners Frictional end.

Consultant planner testing of soil samples taken in the field, and then tested in the laboratory and get the parameters used as a reference for planning calculations carrying capacity of bored pile.

<table>
<thead>
<tr>
<th>Table 1. Formula of Vesic’s Method (1970)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesi (1967)</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>Tanah Cohesive:</td>
</tr>
<tr>
<td>When, Cohesive Soil:</td>
</tr>
<tr>
<td>Tanah Non-Cohesive:</td>
</tr>
<tr>
<td>When, Non-Cohesive Soil:</td>
</tr>
</tbody>
</table>
Where:
- \(Q_p \) = Detainees end unit area (tons)
- \(A_p \) = cross-sectional area bore pile (m²)
- \(C_u \) = undrained Cohesion (ton / m²)
- \(N_c * \) = factor bearing capacity of the land, to bore pile value \(N_c * = 9 \) (Whitaked and Cooke, 1966)
- \(q' \) = pressure vertical effective (ton / m²)
- \(N_q * \) = factor bearing capacity

Vesic (1967) proposed a correlation between the angle of friction and \(N_q * \) as shown in the following figure:

Image 1. Factor \(N_q * \) (Vesic's, 1970)

b. Reese & Wright (1967)

The consultant investigated of soil and calculate the carrying capacity of the foundation pile of SPT data with the following formula:

Table 2. Formula of Reese & Wright’s Method (1967)

<table>
<thead>
<tr>
<th>Method</th>
<th>Formula</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reese & Wright (1967)</td>
<td>(Q_p = A_p \times q)</td>
<td>(q' = \text{using Graph Reese and Wright (1977), that include correlation between value } q_p \text{ and } N_{sPT})</td>
</tr>
<tr>
<td>Reese & Wright (1967)</td>
<td>(Q_s = t \times L_i \times p)</td>
<td>(t = \alpha \times C_u)</td>
</tr>
</tbody>
</table>

C. Loading Test Data

The purpose of the experiment loading vertical (compressive loading test) to the pile foundation was to determine the relationship between the load and a decrease in the foundation due to load plan, to test the pile held capable of supporting the load plan and prove that the implementation is not a failure occurs, and to determine the ultimate carrying capacity of the real (real ultimate bearing capacity) as the control of the results of calculations based on static and dynamic formula (Hardiyatmo, 2010).

Based on the assumption that only the shear deformation occurs and that the load-reduction curve is shaped hyperbole, the graph \(\Delta / Q_{va} - \Delta \) is a straight-line sloping location.
Comparison Of Bored Pile Axial Bearing Capacity Based On Vesic’s Method (1970), Standard Penetration Test (Spt), And Loading Test In The Project Of Elevated Toll Road Jakarta – Cikampek Sta.9+500 – Sta.47+000

The amount of ultimate bearing capacity is the inverse slope of the line that divided Δ / Qva.

- Figure Δ / Qva against Δ, where Δ is the reduction of Δ / Qva is the applied load.
- Ultimate load $(Qx)_{ult} = 1 / C$. The image below illustrates these terms.
- The relationship given in this picture that the load curve approaching a hyperbolic decline.

2. Mazurkiewich’s Method (1972)

Mazurkiewich ultimate load determination procedure is as follows:

- The load curve plotted against a decline.
- Draw a line from some point reduction have to cut a curve, then a vertical line drawn up to cut the load axis.
- From the intersection of each load, created a line of 45° to the line of intersection next and so on.
- Connect the dots thus formed to produce a straight line.
- The intersection of the straight line with the axis of the load is a load Ultimate.

3. RESULT

The calculation of bearing capacity of bored pile data was taken at BH-04A, BH-03B, BH-02A, BH-01B, P-1A, P-2B, P-3A, P-4B.

Table 3. Calculation Data from Vesic’s Method (1970)

<table>
<thead>
<tr>
<th>No.</th>
<th>Depth (m)</th>
<th>Soil Type</th>
<th>Diameter Pile (m)</th>
<th>Ap (m2)</th>
<th>N-SPT</th>
<th>Qp</th>
<th>Qu</th>
<th>Cu</th>
<th>Nc*</th>
<th>α</th>
<th>f</th>
<th>Li</th>
<th>Q_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>CLAY</td>
<td>1.2</td>
<td>1.1304</td>
<td>18.00</td>
<td>9</td>
<td>1.2</td>
<td>21.6</td>
<td>4.50</td>
<td>3.768</td>
<td>183.1248</td>
<td>116.64</td>
<td>116.64</td>
</tr>
<tr>
<td>2</td>
<td>0.50</td>
<td>CLAY</td>
<td>1.2</td>
<td>1.1304</td>
<td>18.00</td>
<td>9</td>
<td>1.2</td>
<td>21.6</td>
<td>4.50</td>
<td>3.768</td>
<td>219.6596</td>
<td>163.36</td>
<td>163.36</td>
</tr>
<tr>
<td>3</td>
<td>1.00</td>
<td>CLAY</td>
<td>1.2</td>
<td>1.1304</td>
<td>18.00</td>
<td>9</td>
<td>1.2</td>
<td>21.6</td>
<td>4.50</td>
<td>3.768</td>
<td>256.2944</td>
<td>210.08</td>
<td>210.08</td>
</tr>
<tr>
<td>4</td>
<td>1.50</td>
<td>CLAY</td>
<td>1.2</td>
<td>1.1304</td>
<td>18.00</td>
<td>9</td>
<td>1.2</td>
<td>21.6</td>
<td>4.50</td>
<td>3.768</td>
<td>292.9292</td>
<td>256.79</td>
<td>256.79</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
<td>CLAY</td>
<td>1.2</td>
<td>1.1304</td>
<td>18.00</td>
<td>9</td>
<td>1.2</td>
<td>21.6</td>
<td>4.50</td>
<td>3.768</td>
<td>329.5640</td>
<td>303.50</td>
<td>303.50</td>
</tr>
</tbody>
</table>

- Calculation at the Point 1 (BH-04A)
 Example in depth 0.5 m:
 - End Bearing Capacity:
 \[Q_p = Ap Cu Nc^* \]
 \[Q_p = 1.131 \times 18 \times 9 = 183,125 \text{ kN} \]
 - Friction Bearing Capacity:
 \[Q_s = f \times Li \times p \]
 \[Q_s = 21.6 \times 4.5 \times 3,768 = 116,64 \text{ kN} \]
b. Reese and Wright (1967)

Table 4 Calculation Data from Reese and Wright (1967)

<table>
<thead>
<tr>
<th>No.</th>
<th>Depth (m)</th>
<th>Soil Type</th>
<th>Diam. Pile (m)</th>
<th>Ap (m²)</th>
<th>N-SPT</th>
<th>Qp</th>
<th>Qu</th>
<th>Cu</th>
<th>q</th>
<th>α</th>
<th>f</th>
<th>Li</th>
<th>p</th>
<th>Qs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,00</td>
<td>CLAY</td>
<td>1,2</td>
<td>1,1304</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,50</td>
<td>CLAY</td>
<td>1,2</td>
<td>1,1304</td>
<td>3</td>
<td>10,00</td>
<td>90,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,00</td>
<td>CLAY</td>
<td>1,2</td>
<td>1,1304</td>
<td>3</td>
<td>10,00</td>
<td>90,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1,50</td>
<td>CLAY</td>
<td>1,2</td>
<td>1,1304</td>
<td>3</td>
<td>10,00</td>
<td>90,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2,00</td>
<td>CLAY</td>
<td>1,2</td>
<td>1,1304</td>
<td>5</td>
<td>16,67</td>
<td>150,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2,50</td>
<td>CLAY</td>
<td>1,2</td>
<td>1,1304</td>
<td>5</td>
<td>16,67</td>
<td>150,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3,00</td>
<td>CLAY</td>
<td>1,2</td>
<td>1,1304</td>
<td>5</td>
<td>16,67</td>
<td>150,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculation at the Point 1 (BH-04A)

- Example in depth 1.0 m:
 - End Bearing Capacity:
 \[Q_p = A_p \times q \]
 \[Q_p = 1,131 \times 90 = 101,736 \text{kN} \]
 - Friction Bearing Capacity:
 \[Q_s = f \times L_i \times p \]
 \[Q_s = 12 \times 2 \times 3,768 = 90,432 \text{kN} \]

c. Bearing Capacity Using Loading Test

The calculation of bearing capacity of bored pile per layer using Chin Method (1970) and Mazurkiewich (1972) Method and Data Loading Test was taken at BH-04A, BH-03B, BH-02A, BH-01B, P-1A, P-2B, P-3A, P-4B.

Table 5. Dial Reading of Loading Test Data

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Bearing Capacity (Ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>1</td>
<td>400</td>
</tr>
<tr>
<td>2</td>
<td>600</td>
</tr>
</tbody>
</table>

Table 6. Settlement and Load in Loading Test

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Bearing Capacity (Ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>1</td>
<td>400</td>
</tr>
<tr>
<td>2</td>
<td>600</td>
</tr>
</tbody>
</table>

Image 5. Graph of Bearing Capacity BH-04A

Image 6. Graph of Bearing Capacity BH-04A
Comparison Of Bored Pile Axial Bearing Capacity Based On Vesic’s Method (1970), Standard Penetration Test (SPT), And Loading Test In The Project Of Elevated Toll Road Jakarta – Cikampek Sta.9+500 – Sta.47+000

After we know the settlement and the load from dial reading, we must plot the result into a graph, and make trendline equation from that using Microsoft excel, as shown in figure below:

![Image 7. Graph of Interpretation Loading Test](image7.png)

After we know the equation, we can calculate from that and known the interpretation bearing capacity from loading test data.

\[Q_{ult} = \frac{1}{m} \]

That the \(m \) is the value in front of the \(X \). So, we can calculate the interpretation loading test bearing capacity is

\[Q_{ult} = \frac{1}{0.0012} = 833.33 \text{ ton} \]

2. Mazurkiewich’s Method (1972)

Like Chin’s Method, this method using software Microsoft excel and focus on graphic method without calculate the interpretation. We should plot the loading data test and make interpretation from drawing a line in the graph like shown in figure below.

![Image 8. Graph of Mazurkiewich Method](image8.png)

So, we can see the end of the graph line is in over 700 ton, and if that’s figure can be shown, the value of interpretation is in the range of 800 ton till 900 ton.

4. DISSCUSION

From the result bearing capacity from each method, we can recap the result like shown in table below:

<table>
<thead>
<tr>
<th>Method</th>
<th>BH-04A</th>
<th>BH-03A</th>
<th>BH-02B</th>
<th>BH-01B</th>
<th>P-1A</th>
<th>P-2B</th>
<th>P-3A</th>
<th>P-4B</th>
</tr>
</thead>
<tbody>
<tr>
<td>VESIC’S</td>
<td>764 ton</td>
<td>790 ton</td>
<td>417 ton</td>
<td>964 ton</td>
<td>609 ton</td>
<td>230 ton</td>
<td>609 ton</td>
<td>195 ton</td>
</tr>
<tr>
<td>SPT DATA</td>
<td>551 ton</td>
<td>561 ton</td>
<td>586 ton</td>
<td>511 ton</td>
<td>725 ton</td>
<td>615 ton</td>
<td>673 ton</td>
<td>615 ton</td>
</tr>
<tr>
<td>LOADING TEST DATA</td>
<td>830 Ton</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. CONCLUSION

b. From the calculation result can be concluded that the value of real bearing capacity from loading test is the largest value, while the result from Vesic’s Method and SPT Data Method have relatively the same in some borehole.

c. The different ultimate bearing capacity can be caused from the specification soil, soil type which different distance the
closest one even at the location is can be caused differences in soil condition thus affecting the bearing capacity.

d. From the SPT data can be concluded that if the B-SPT value is small than the density of soil is small and the soil is soft. Even when the value f N-SPT is big, so the density value is big too and the soil is hard soil. (Sosrodarsono dan Nakazawa, 1983)

REFERENCES

Comparison Of Bored Pile Axial Bearing Capacity Based On Vesic’s Method (1970), Standard Penetration Test (Spt), And Loading Test In The Project Of Elevated Toll Road Jakarta – Cikampek Sta.9+500 – Sta.47+000